

香港大學 THE UNIVERSITY OF HONG KONG

Although LRTC breaks through the limitation of relying only on the observed adjacent pixels and adopts a global low-rank assumption on the completed image, we find the global low-rank setting embodies a tradeoff between restoring the originally low-rank parts and neglecting the potentially high-rank parts. The tradeoff depicted in figure above, brings about two issues:

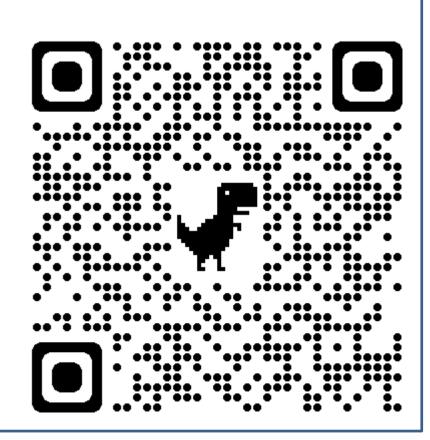
- 1) The restoration of the parts associated with a lower local rank will be hindered with insufficient observed pixels.
- 2) The potentially high-rank complex objects will suffer the loss of details due to over-smoothing.

Coarse to Fine: Image Restoration Boosted by Multi-Scale Low-Rank Tensor Completion Rui Lin, Cong Chen, Ngai Wong

Results

Ground Truth			90% Missing				Pure LRTC-TV-II			C2F-LRTC-TV-II			
Airplane	0 PSNR	.7 RSE	0. PSNR	8 RSE	0 PSNR	.9 RSE	Baboon	0. PSNR	7 RSE	0. PSNR	8 RSE	0. PSNR	9 RSE
HaLRTC C2F-HaLRTC STDC C2F-STDC LRTC-TV-II C2F-LRTC-TV-II LRTC-PDS C2F-LRTC-PDS	24.50 24.76 22.77 23.19 26.91 27.84 25.42 25.79	0.074 0.072 0.090 0.086 0.056 0.051 0.072	21.97 22.26 18.67 21.16 27.33 27.35 23.55 23.83	0.099 0.096 0.145 0.137 0.068 0.067 0.089	18.97 19.45 15.25 20.13 22.80 23.28 20.72 21.15	0.140 0.133 0.236 0.123 0.098 0.085 0.144	HaLRTC C2F-HaLRTC STDC C2F-STDC LRTC-TV-II C2F-LRTC-TV-II LRTC-PDS C2F-LRTC-PDS	21.94 22.16 17.19 20.19 23.30 23.47 23.17 23.25	0.148 0.144 0.256 0.176 0.129 0.126 0.136 0.131	20.48 20.69 16.50 19.50 22.32 22.52 22.07	0.175 0.171 0.277 0.197 0.143 0.141 0.154	18.60 18.62 14.48 17.19 21.22 23.05 20.72	0.220 0.217 0.350 0.256 0.165 0.161 0.245
Barbara	25.79 0.066		23.83 0.084 0.8 PSNR RSE		21.15 0.140		Facade	0.7 PSNR RSE		22.15 0.150 0.8 PSNR RSE		0.9 0.9 0.9 PSNR RSE	
HaLRTC C2F-HaLRTC STDC C2F-STDC LRTC-TV-II C2F-LRTC-TV-II LRTC-PDS C2F-LRTC-PDS	25.27 25.72 22.04 22.17 27.88 28.46 26.86 27.00	0.112 0.106 0.162 0.085 0.078 0.107 0.098	22.65 22.87 19.84 20.90 26.06 26.69 25.13 25.38	0.151 0.147 0.209 0.207 0.100 0.097 0.132 0.124	19.06 19.26 16.28 20.41 23.87 24.75 22.13 22.34	0.229 0.223 0.315 0.196 0.131 0.119 0.185 0.178	HaLRTC C2F-HaLRTC STDC C2F-STDC LRTC-TV-II C2F-LRTC-TV-II LRTC-PDS C2F-LRTC-PDS	28.58 29.74 26.54 26.64 27.19 27.89 24.01 24.41	0.083 0.063 0.091 0.090 0.092 0.068 0.130 0.123	26.09 27.54 24.54 24.56 25.76 25.80 22.21 22.58	0.110 0.081 0.115 0.114 0.099 0.091 0.159 0.153	22.57 24.87 20.95 22.62 21.79 24.40 19.93 20.09	0.144 0.111 0.153 0.143 0.158 0.117 0.246 0.239
House	ie 0.7 PSNR RSE		0.8 PSNR RSE		0.9 PSNR RSE		Lena	0.7 PSNR RSE		0.8 PSNR RSE		0.9 PSNR RSE	
HaLRTC C2F-HaLRTC STDC C2F-STDC LRTC-TV-II C2F-LRTC-TV-II LRTC-PDS C2F-LRTC-PDS	25.79 25.92 24.28 24.73 28.27 28.34 27.19 27.30	0.084 0.830 0.100 0.095 0.065 0.064 0.075 0.066	23.72 24.07 22.50 22.88 27.37 27.40 25.63 25.74	0.107 0.103 0.123 0.118 0.074 0.073 0.096 0.089	20.54 21.05 17.54 21.91 24.99 25.37 22.77 22.85	0.154 0.145 0.218 0.132 0.094 0.088 0.146 0.142	HaLRTC C2F-HaLRTC STDC C2F-STDC LRTC-TV-II C2F-LRTC-TV-II LRTC-PDS C2F-LRTC-PDS	25.86 25.99 23.22 22.64 29.62 30.04 28.48 28.55	0.093 0.091 0.125 0.118 0.059 0.058 0.086 0.077	23.19 23.28 20.45 21.56 27.52 27.92 26.39 26.49	0.125 0.124 0.171 0.169 0.072 0.070 0.106 0.099	19.77 20.15 16.64 20.84 25.36 25.51 22.40 22.46	0.185 0.177 0.266 0.164 0.097 0.095 0.141 0.135
Peppers	PSNR 0	.7 RSE	0. PSNR	8 RSE	0 PSNR	.9 RSE	Sailboat	0. PSNR	7 RSE	PSNR 0.	8 RSE	0. PSNR	9 RSE
HaLRTC C2F-HaLRTC STDC C2F-STDC LRTC-TV-II C2F-LRTC-TV-II LRTC-PDS C2F-LRTC-PDS	22.82 23.59 21.37 21.48 27.75 28.37 27.05 27.33	0.132 0.121 0.156 0.154 0.076 0.072 0.102 0.092	20.31 20.72 18.61 20.64 25.25 26.17 24.06 24.31	0.176 0.168 0.214 0.210 0.103 0.096 0.131 0.122	16.86 16.86 16.31 18.42 22.04 23.46 20.09 20.35	0.262 0.261 0.347 0.219 0.144 0.122 0.194 0.188	HaLRTC C2F-HaLRTC STDC C2F-STDC LRTC-TV-II C2F-LRTC-TV-II LRTC-PDS C2F-LRTC-PDS	22.78 23.09 20.58 20.85 25.21 26.61 23.95 24.33	0.127 0.123 0.184 0.178 0.103 0.092 0.123 0.117	20.60 20.87 18.10 18.23 23.42 23.76 22.13 22.46	0.164 0.159 0.245 0.185 0.118 0.112 0.153 0.147	17.81 17.93 14.87 19.12 20.67 21.61 19.37 19.58	0.226 0.223 0.317 0.194 0.162 0.146 0.209 0.205

Conclusions


1) A general and intuitive C2F strategy is proposed, which effectively enhances the performance of existing LRTC methods by seeking proper local ranks for both the low- and high-rank parts, respectively.

2) No more trade-off that aims to balance the restoration performance of simple and complex parts is required. 3) Utilization of the data from both coarse and fine hierarchies, thus capturing both the global and local data structure simultaneously.

The C2F strategy helps LRTC methods to restore more details.

It can be observed that under all missing ratios, the performance of every pure LRTC method is enhanced after employing the C2F strategy. In other words, C2F-LRTC can restore images with large PSNR and smaller RSE values.

